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1
3D VISUAL PROXEMICS: RECOGNIZING
HUMAN INTERACTIONS IN 3D FROM A
SINGLE IMAGE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of and priority to
U.S. Provisional Application Ser. No. 61/787,375, filed Mar.
15,2013, which is incorporated herein by this reference in its
entirety.

GOVERNMENT RIGHTS

This invention was made in part with government support
under contract number D11PC20066 award by the United
States Department of the Interior—National Business Center.
The Government has certain rights in this invention.

BACKGROUND

A significant number of images and videos uploaded to the
Internet, such as YouTube videos or Flickr images, contain
scenes of people interacting with people. However, currently
there is no automatic method to classify/search these images
based on different social interactions and activities. Thus,
digital apps cannot automatically sort out or arrange photos in
a digital photocollections based on social activities/interac-
tions. In addition, image search engines photos can’t search
for images with various social activities unless the someone
manually provides text tags with the images.

SUMMARY

We present a unified framework called 3D Visual Prox-
emics Analysis (VPA3D) for detecting and classifying people
interactions in unconstrained user generated images. VPA3D
first estimates people/face depths in 3D and camera pose, then
performs perspective rectification to map people locations
from the scene space to the 3D space. The 3D layout is
computed by a novel algorithm that robustly fuses semantic
constraints into a linear camera model. To characterize
human interaction space, we introduce visual proxemes; a set
of prototypical patterns to characterize social interactions.
Finally, a set of spatial and structural features are used to
detect and recognize a variety of social interactions, including
people dining together, family portraits, people addressing an
audience, etc.

Vast amounts of Internet content captures people-centric
events. Detecting and classifying people interactions in
images and videos could help us to automatically tag, retrieve
and browse large archives using high-level, concept based
keywords. Such a representation would support queries such
as “find me the video segment where we are walking down the
aisle” or “find me the photos where I am curling the birthday
cake”. Such queries are very hard to be represented using
low-level features. To bridge this semantic gap between
human defined phrases and image features, we present an
intermediate representation using visual proxemes. Briefly
the invention can have the following commercial impact: 1)
The invention can be used in digital apps to sort out or arrange
photos in a digital photocollections. Social networking sites
(e.g. Facebook, and Google Picasa photo album) directly
benefit from this. 2) The application can aid image search for
photos depicting various types of social activities in large
image databases. 3) The invention can be used to accurately
determine the physical distance between people in a photo-
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graph. This information can potentially be used for forensic
analysis from photographs or CCD images.

Group behavior based on people tracks has been studied.
Due to the accuracy of face detection systems, detected faces
are used to localize people and detect their layout in the
image. Our contributions vis-a-vis current state-of-the-art is
two-fold. First, we localize the explicit 3D positions of people
in real world, which improves the understanding of relative
distances between people. To achieve an accurate layout, we
develop an algorithm that robustly fuses semantic constraints
about human interpositions into a linear camera model. Pre-
vious work has only considered 2D layout. Additionally, we
also compute the camera location and pose to make our solu-
tion view invariant; this capability is not present in previous
works. Second, we analyze a large number of people configu-
rations and provide statistical and structural features to cap-
ture them. Previous work only considered simple posing pho-
toshoots of people.

BRIEF DESCRIPTION OF THE DRAWINGS

This disclosure is illustrated by way of example and not by
way of limitation in the accompanying figures. The figures
may, alone or in combination illustrate one or more embodi-
ments of the disclosure. Elements illustrated in the figures are
not necessarily drawn to scale. Reference labels may be
repeated among the figures to indicate corresponding or
analogous elements.

FIG. 1 illustrates a number of exemplary digital images a,
b, ¢, d, e, and f, each depicting a commonly occurring visual
proxeme that may be recognized using the techniques dis-
closed herein;

FIG. 2 is a simplified system diagram of at least one
embodiment of a framework for 3D Visual Proxemic Analysis
as disclosed herein;

FIG. 3 is a simplified taxonomy of at least one embodiment
of attributes for Visual Proxemics classification as disclosed
herein;

FIG. 4 illustrates digital images (a) and (b) annotated to
depict outliers and inliers discovered through semantic con-
straints, and associated plots, as disclosed herein;

FIG. 5 is a simplified flow diagram of at least on embodi-
ment of a perspective rectification module as disclosed
herein; and

FIG. 6 illustrates a number of exemplary digital images
(@),(c),(e),(2),(1),(k),(m),(0),(q),(s), and (u), annotated to
depict inliers and outliers, and related plots (b),(d),(f),(h),(j),
D),(m),(p),(r),(1), and (v), as disclosed herein.

DETAILED DESCRIPTION

According to one or more aspects of the present disclosure,
three dimensional (3D) proxemics may be used to recognize
human interactions in 3D from a single two-dimensional
image. A significant number of images and videos uploaded
to the Internet, such as YouTube videos or Flickr images,
contain scenes of people interacting with people. Studying
people interactions by analyzing their spatial configuration,
also known as Proxemics in anthropology, is an important
step towards understanding web images and videos. How-
ever, recognizing human spatial configurations (i.e., prox-
emes) has received relatively little attention in computer
vision, especially for unconstrained user generated content.

Referring to FIG. 1, people configurations and the camera-
person’s perspective provide strong cues about the type of
social interaction that the people in the image are participat-
ing in. One embodiment of the disclosed method uses two-
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dimensional face locations from a single image to estimate
the camera pose and the spatial arrangement of people in 3D.
FIG. 1 shows six typical types of people interactions that are
often seen in Internet images and video frames: They are (1)
Group Interaction, (2) Family photo, (3) Group photo, (4)
Couple with an audience, (5) Crowd, and (6) Speaker with
audience. From these images, it is important to note that the
people configurations in the 3D space would better reflect the
type of interaction than the configurations in a 2D image
space. For example, FIGS. 1(a), (d), (¢) and (f) all have many
faces distributed throughout the image space, but they have
very different spatial arrangements that can be distinguished
in the 3D space. Additionally, not only how people are orga-
nized spatially, but also how the shots are framed (i.e. the
relative camera location, direction and pose) convey the type
of proxemes depicted in these images. For example, in order
to capture the whole group and to avoid occlusion, high-angle
shots are used for group interaction (FIG. 1(a)) and crowd (e).
On the other hand, to capture the focus of attention, or prin-
cipals in an event, such as a family portrait (FIG. 1(5)),
couples in a ceremony (FIG. 1(d)) and speaker with an audi-
ence (FIG. 1(f)), eye level shots are used. For artistic impres-
sion and better capture of the people in foreground without
concerns of occluding the background, low-angle shots are
used, especially for group photos as shown in FIG. 1(c).

A number of research groups have conducted insightful
studies for understanding people interactions in images and
videos, though with limited scope. Most of these approaches
perform their analysis in the 2D camera space. Although these
approaches demonstrated their effectiveness, their robustness
is fundamentally limited by the 2D analysis paradigm and
cannot handle the diversity in camera pose and people depths
often seen in user generated Internet content.

Some recent works estimate 3D location of people using
faces and use these locations to detect social interaction
among people. In other works, location of faces in the 3D
space around a camera wearing person are used to detect
attention patterns. However, these approaches only attempt to
detect a very limited set of human interactions and their 3D
estimation cannot effectively handle the diversity of people in
terms of age (big adults vs. small children), height (tall vs.
short), and the diversity of peoples poses such as sitting,
standing and standing on platforms. Additionally, these
approaches do not take camera location and pose into account
when analyzing people interactions, which can be an impor-
tant cue about the intent of the shot.

The theory of Proxemics studies the correlation between
human’s use of space (proxemic behavior) and interpersonal
communication. It provides a platform to understand the cues
that are relevant in human interactions. Proxemics has been
applied in the field of cinematography where it is used for
optimizing the scene layout and the position of the camera
with respect to the characters in the scene. We believe these
concepts are relevant beyond cinematic visuals and pervade
all types of images and videos captured by people. Inspired by
the role of Proxemics in visual domain, we propose to analyze
and recognize human interactions using the attributes studied
in this theory.

In this paper, we propose a unified framework called 3D
Visual Proxemics Analysis (VPA3D), for detecting and clas-
sifying people interactions from a single image. VPA3D first
estimates people/face depths in 3D, then performs perspec-
tive rectification to map people locations from the scene space
to the 3D space. Finally, a set of spatial and structural features
are used to detect and recognize the six types of people
interaction classes.
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The proposed VPA3D approach surpasses state-of-the-art
people configuration analysis in at least the following three
aspects. First, PA3D uses 3D reasoning for robust depth esti-
mation in the presence of age, size, height and human pose
variation in a single image. Second, a set of shape descriptors
derived from the attributes of Proxemics is used to capture
type of people interaction in the eyes of each individual par-
ticipant not only for robust classification but also for classi-
fication of individuals role in a visual proxeme. Additionally,
the types of camera pose are used as a prior indicating pos-
sible intent of the camera-person who took the picture. Third,
to characterize the human interaction space, we introduce
visual proxemes; a set of prototypical patterns that represent
commonly occurring people interactions in social events. The
source of our visual proxemes is the NIST TRECVID Multi-
media Event Detection dataset which contains annotated data
for 15 high-level events. A set of 6 commonly occurring
visual proxemes (shown in FIG. 1) are selected from key-
frames containing groups of people. We train a discriminative
classifier that classifies 3D arrangements of people into these
visual proxemes and quantitatively evaluate the performance
on this large, challenging dataset.

Broadly, our 3D Visual Proxemic Analysis formulates a
framework 200 that unifies three related aspects, as illustrated
in the system pipeline (FIG. 2). First, we introduce visual
proxemics 210 as a prior domain knowledge that guides our
analysis and recognition of human interactions in images and
videos. Then, we describe a novel perspective rectification
algorithm 212 to estimate people/face depths in 3D and cam-
era view from face detections in images. Finally, we catego-
rize images into common types of social interactions (i.e.,
proxemes) in the visual proxeme classification 214 stage by
combining the estimates of face positions and camera view
with our knowledge of Visual Proxemics through spatial and
structural features in the 3D space.

Proxemics is a branch of cultural anthropology that studies
man’s use of space as a way for nonverbal communication. In
this work, we leverage the findings in Proxemics to guide us
in our analysis and recognition of human interactions in
visual media including images and videos. We call this Visual
Proxemics and summarize our taxonomy of attributes in FIG.
3.

A key concept in Proxemics is “personal space” that asso-
ciates inter-person distance with the relationships among
people. Itis categorized into four classes: “intimate distance”
for close family, “personal distance” for friends, “social”
distance for acquaintances and “public distance” for strang-
ers. Additionally, people configuration needs to support the
communicative factors such as physical contacts, touching,
visual, and voice factors needed in an interaction. Based on
these factors, we can see that certain types of the interactions
will result in distinct shape configurations in 3D. For
example, in FIG. 1a, to enable direct eye contact between any
pair of participants in a group interaction, people align them-
selves in a semi-circular shape. In contrast, if two people are
the focus of attention, as in FIG. 1d, we have multiple shape
layers, where the two people at the center of attention share an
intimate space, while the audience forms a distinct second
layer in the background.

One area of interest is the application of proxemics to
cinematography where the shot composition and camera
viewpoint is optimized for visual weight. In cinema, a shot is
either a long shot, a medium shot or a close-up depending on
whether it depicts “public proxemics”, “personal proxemics”
or “intimate proxemic”, respectively. Similarly, the camera
viewpoint is chosen based on the degree of occlusion allowed
in the scene. To assure full visibility of every character in the
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scene, a high-angle shot is chosen whereas for intimate scenes
and closeups, an eye-level shot or low-angle shot is more
suitable.

From these attributes, we can see that each of the interac-
tions specified in FIG. 1 can be described as a combination of
several of these factors. For example, “Group Interaction” in
FIG. 1(a) shows people within social distance in a single layer
with a concave shape and is captured using high-angle,
medium shot. In contrast, a “Family photo” in FIG. 1(5) is an
eye-level, closeup shot of a family within intimate distance.
The taxonomy of attributes shown in FIG. 3 are used to design
features for Visual Proxemics classification, as discussed
below.

One embodiment of a method 500 that may be executed by,
for example, the perspective rectification module 212 is illus-
trated in FIG. 5 and described below. Given the 2D face
locations in an image, the goal is to recover the camera height
and the face positions in the X-Z plane relative to the camera
center. These parameters are computed by using an existing
camera model and iterating between the following two
steps—1.

Referring to block 510 of FIG. 5, initializing the model
with coarse parameter estimates through a robust estimation
technique. In addition to the parameters, we also detect out-
liers; face locations that do not fit the model hypothesis of
uniform people heights and poses. This is described as the
outlier detection step. 2. Referring to block 512 of FIG. 5,
refining the parameter estimates by 3D reasoning about posi-
tion of outliers in relation to the inliers based on domain
constraints that relate people’s heights and poses. This is
called the outlier reasoning step. The model alternates
between estimating camera parameters and applying posi-
tional constraints until convergence is reached. In the follow-
ing sections, these two steps are described in detail.

This section describes an algorithm to estimate face depths,
horizon line and camera height from 2D face locations in an
image. Our model is based on the camera model described in,
for example, D. Hoiem, A. Efros, and M. Hebert, Putting
objects in perspective, IICV, 0(1), 2008. We provide the deri-
vation explicitly for the sake of completeness.

The coordinate transformation of a point using a typical
pinhole camera model with uniform aspect ratio, zero skew
and restricted camera rotation is given by,

u 0wyl 0 0 0 "

vil==| 0 s v [0 cost —sindy y7 R
7 w

v 0 0 1 NO sinfy cosdf 0O z

1

Table 1: Statistics of our Visual Proxemes dataset based on
NEST TRECVID corpus.

TABLE 1

Statistics of our Visual Proxemes dataset based on NIST TRECVID
compus [2].

Proxeme type # examples/# dataset % dataset

Group photo 345/3814 9.0%
Group interaction 187/3814 4.9%
Couple and audience 99/3814 2.6%
Crowd 2448/3814 64.2%
Family photo 148/3814 3.8%
Speaker and audience 68/3814 1.8%
Undefined 519/3814 13.6%
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TABLE 1-continued

Statistics of our Visual Proxemes dataset based on NIST TRECVID
corpus [2].

Proxeme type # examples/# dataset % dataset

High-angle 918/3814 24%
Eye-level 2722/3814 71%
Low-angle 174/3814 5%

where a (0, u') are its image coordinates, (I, y**, z**) are its
3D coordinates, and (u.”, v.") are the coordinates of the
camera center; where the superscript w indicates three-di-
mensional coordinates and i indicates image coordinates. We
assume that the camera is located at (x =0, z_*=0) and tilted
slightly along x axis by 8,”. y_” is the camera height and " is
the focal length.

At this stage some simplifying assumptions are made—(a)
faces have constant heights, (b) faces rest on ground plane,
which implies y*=0. The grounded position projects onto the
bottom edge of the face bounding box in the image, u'=v,’,
v'=v,’. (¢) camera tilt is small, which implies cos 6 ~1 and sin
0,~0,~tan 0, ~(v_"—v,)/f, where v, is the height of the hori-
zon line (also known as vanishing line) in image coordinates.
By applying these approximations, we estimate z" and x"
respectively,

®

D e VI a9

rEa— o YT
vy —vb) vp = Vo)

The estimated z" is the 3D distance in depth from the
camera center z.” and x" is the horizontal distance from the
camera center x.". Using these (x", z") coordinates, we can
undo the perspective projection of the 2D image and recover
the perspective rectified face layout in the 3D coordinate
system. Substituting the value of z into the equation for y*
and ignoring small terms we get,

@

This equation relates the world height of a face (y") to its
image height (v'=v,’) through its vertical position in the
image (v,’) and through two unknowns—the camera height

(y.") and the horizon line (v,"). In general, given N>=2 faces
in an image, we have the following system of linear equations.

Y=y (Vv

hl hw hwvbl (3)
hy VN

Thus, given an image with at least two detected faces, we
can simultaneously solve for the two unknowns by minimiz-
ing the linear least squares error.

To get meaningful camera parameters, it is essential to
filter out irregular observations that violate the model hypoth-
esis. Weuse Random Sample Consensus (RANSAC) to reject
these so-called outliers to get robust estimates. RANSAC is
an iterative framework with two steps.

First, a minimal sample set (2 face locations) is selected
and model parameters (Z,,, V., ¥,) are computed by least
squares estimator (as explained above). Next, each instance
of the observation set is checked for consistency with the
estimated model. We estimate the face height in the image
according to the model using h,=h,,(v,~¥,)/¥. and compute
the deviation from be observed height using e,,/=|jh,~] to
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find the estimator error for that face. Outliers are instances
whose summed errors over all the iterations exceed a pre-
defined threshold.

In this section, semantic constraints based outlier reason-
ing is discussed. Referring to FIG. 4, circled faces depict
outliers and the connected faces show the related inliers dis-
covered though semantic constraints. The linearized model is
based on the hypothesis that all faces are (a) located on the
same plane and (b) of the same size. However these assump-
tions do not always hold in practice. The faces that violate
these assumptions are detected as outliers in the RANSAC
step. Conventionally, outliers are treated as noisy observa-
tions and rejected from estimates. However, outlier faces may
occur because of variations in face sizes and heights arising
due to difference in age, pose (sitting versus standing) and
physical planes of reference (ground level or on a platform).
Hence, instead of eliminating them from consideration, we
attempt to reason about them and restore them in our calcu-
lations. For doing this, we make use of semantics of Visual
Proxemics to constrain the possible depth orderings of the
outlier faces in the image. In particular, we consider two types
of constraints visibility constraint and localized pose con-
straint, as explained below.

With regard to the visibility constraint, consider the pose
configuration in FIG. 4(a). RANSAC estimates the sitting
person’s face to be an outlier because it violates the common
ground plane assumption (assumption (b) in the linear
model). However, we can easily see that for the sitting person
is visible, she has to be in front of the standing person. We
formulate this visibility constraint as follows—The only way
for two faces to be visible at the same horizontal location is if
the lower face is closer in depth than the face above it. We
formulate this constraint by the following inequality. (*(x=0,
y=0) is the upper left corner in image space and z increases
upwards).

Bx=x*)ymyi*) (€,~2,,)=0, 4)

where d(a—b) is 1 when a=b and z,, is the RANSAC estimate
of depth. For each outlier in the image, we determine if it
shares a visibility constraint with any of the inliers and main-
tain an index of all such pairs. Each such (outlier, inliers) pair
is assumed to share a common ground plane (are standing/
sitting on the same ground level). Based on this assumption
the height estimates of the outliers are refined.

The localized pose constraint assumes that the people who
are physically close to each other also share the same pose.
Consider the group photo in FIG. 4(5). RANSAC estimation
(top plot) detects the child’s face location as an outlier and
incorrectly estimates its depth because of the height difter-
ence from the remaining members of the group. Now, if we
assume that the inliers that are physically close to the outlier
in the world also have a similar pose, then we can localize the
ground plane level at the outlier based on the face locations of
the neighboring inliers. This can help us fix the depth of the
outlier without concerns about its vertical position in the
image (as shown in the bottom plot).

Formally, let ij_ «'" represent the inlier neighbors of outlier
instance j along horizontal coordinates in the image. If the
difference in the face size of the outlier to its inlier neighbors
is within a threshold, then we can fix the depth of the outlier
within the vicinity of the neighboring inliers. Formally, this
constraint is represented as
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For each outlier in the image, we perform this constraint
test in determine (outlier, inliers) pairs that satisfy the local-
ized pose constraint. These are used to refine the height esti-
mates of the outliers in the following section.

Referring to block 514 of FIG. 5, the model is updated in
accordance with the description below. The height estimates
of'the outliers are refined using the semantically constrained
set of inliers. Specifically, we make use of a piecewise con-
stant ground plane assumption in the image to estimate the
outlier heights in the world. By assuming that the outliers are
located at the same level as the related inliers, the world
height (h™) of the outliers can calculated in proportion to the
inliers. Let B,”*is the body height of an outlier and Gki" bethe
ground plane approximation for a neighboring inlier. The
ground level is calculated by translating the vertical position
of'the face by a quantity proportional to the image height (we
assume face size is 7 times the body size). The body height of
the outlier is based on the average ground plane estimated
from its inliers. The face height is then calculated as a fraction
of the estimated body height.

G;(n =vi +exid, M
& ®)
ke(in N(j) i
B(J)_ur — — Vs h(];_m — Btj_ur/B;(n
ke(in N(j)

The new height ratios are inputs to the next round of
RANSAC step that produce new estimates of face depths and
camera heights. We perform this iteration 3-4 times in our
model.

To capture the spatial arrangement of people, we construct
features based on the attribute taxonomy of Visual Proxemics
as described herein. Specifically, our features are designed to
reflect the information about the following attributes—1)
Distance, 2) Camera pose, 3) Shape, 4) Shot composition, and
5) Shape layers.

With regard to shape cues, we find the Convex Hull and the
Minimum Spanning Tree (MST) for the face locations in X-Z
plane. From these structures, we measure statistics that cap-
ture the overall extent and orientation of the shape. We com-
pute the volume of the convex hull which indicates the spread
of the shape. To measure directional spread, we compute the
eccentricity of its envelope ellipse. We also calculate the
degree of Minimum Spanning Tree which captures of overall
structure of the shape. High branching indicates a compact
shape while low branching indicates a linear shape e.g., in a
group photo.

With regard to shot composition cues, we find the numer-
osity of people and their visual distribution in the scene.
Specifically, we use the convex hull and find the number of
points inside the hull as well as the ratio between inside and
outside points. Values<<1 indicate high spread, e.g., as in a
crowd. We also measure the visual distribution using three
measures—a) Horizontal skew: Using the extremal face loca-
tions along X direction as anchors, we find their center and
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compute standard deviation along X axis. b) Depth skew:
Computes the standard deviation of shape along 7 axis, and ¢)
Centeredness, which combines the deviations along X and Z
axis.

With regard to distance cues, we measure the average
Euclidean distance between pairs of faces in the X-Z plane.
Specifically, we look at two types of distances—a) All pairs
distance, which measures the spacing between each pair of
faces, normalized by the image diagonal. It indicates the
overall interpersonal distance in a group. b) Nearest neighbor
distance which is calculated between faces along the Mini-
mum Spanning Tree. It measures the localized interpersonal
distances.

With regard to camera pose cues, the camera height is
quantized into three levels—low-angle, eye-level and high-
angle. It is indicative about the intent of the shot.

With regard to shape layer cues, we find if people are
arranged in a single group or in separate subgroups based on
within and between layer distances and orientations. Specifi-
cally, we look at a) inter face affinity which is measured as
follows. For each face location, find its pairwise distance to all
other faces and normalize by the maximum distance. Then,
make the pairwise distances symmetric by averaging dis-
tances between each pair. Partition the affinity matrix to dis-
cover subgroups. b) Inter face orientation, in which we com-
pute angles between pairs of faces along the MST with
reference to X axis.

The raw features measure different types of statistics and
thus lie on different scales. To fit the distribution of each
feature within a common scale, we use a sigmoid function
that converts feature values into probabilistic scores between
zero and one. Additionally, some of these features are mean-
ingful within a certain range of values. Shifting a sigmoid
function according to the threshold value allows soft thresh-
olding. If o is the threshold for feature x and c is the weight,
we get the following expression for the sigmoid function.

1
1

Threshold x > o
plx) =
Threshold x <=0,

To compute an aggregate feature from all the faces in an
image, we consider the mean and variance values of each
feature and then fit the sigmoid function to re-adjust the
values. The feature corresponding to an image is a concat-
enated vector of these probability scores.

In this paper we present 3D Visual Proxemics Analysis, a
framework that integrates Visual Proxemics with 3D arrange-
ments of people to identify typical social interactions in Inter-
net images. Our results demonstrate that this unified approach
surpasses the state-of-the-art both in 3D estimation of people
layout from detected faces as well as in classification of social
interactions. We believe that inclusion of semantics allowed
us to estimate better 3D layout than the purely statistical
approaches. A better 3D geometry, in turn, allowed us to
define features informed by Proxemics that improved our
semantic classification. In future, we hope to delve deeper
into this synergistic approach by adding other objects and
expanding our semantic vocabulary of Visual Proxemics.

Embodiments of the disclosure utilize algorithmic prox-
emic analysis of image to provide a variety of functions and in
a variety of systems/applications, including the following
examples.
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In one example, the present disclosure describes a system
that uses detected objects of known dimension to infer 3D
arrangement of the objects, camera parameters and 3D envi-
ronments (e.g. ground plane) in a single image or in a video
sequence.

In another example, the present disclosure describes a sys-
tem that uses faces, people, vehicle to infer 3D arrangement
of'the objects, camera parameters and 3D environments (e.g.
ground plane) in a single image or in a video sequence.

In another example, the present disclosure describes a sys-
tem that uses 3D arrangement of faces, people or vehicles
computed from a single image or in a video sequence to infer
their interactions, such as whether or not they are facing each
other, whether or not they are moving towards each other,
whether or not they can reach or contact each other, etc.

In another example, the present disclosure provides a sys-
tem that uses detected objects of known attributes, their con-
figurations and their poses to infer region of interest addi-
tional objects of interest. E.g. from gaze, hand locations, hand
and body poses and configurations, the system identifies
regions or locations of objects being manipulated by a person
or persons in an image or a video.

In another example, the present disclosure provides a sys-
tem that uses detected objects of known attributes and their
configuration to infer region of interest additional objects of
interest for a given event or activities that a user would like to
search or detect. E.g. from gaze and hand locations and con-
figurations, the system identifies regions or locations as the
focus of attention for classification in order to distinguish two
similar events or activities based on what objects being
manipulated by a person or persons in an image or a video.

In another example, the present disclosure provides a sys-
tem that uses detected objects of known attributes and their
configuration to infer the pose of objects of interest. E.g. from
computed face pose, the system will bias on the location and
potential body pose of the person.

In another example, the present disclosure provides a sys-
tem that uses detected objects of known attributes and their
visibility to infer the type of the layout of the scene and the
layout and existence of the objects. For example, if a person
is detected and his/her lower body is not visible, the system
will infer and bias (through a prior distribution) the existence
of a table, counter or other occluding objects. Another
example, from the foot location of a detected person, the
system can determine the ground location, and location of
tables and working space that the person can interact with.

In another example, the present disclosure provides an
information retrieval system that automatically converts a
user query into a set of events, actions, objects, object rela-
tionships, regions of interest related to objects and their inter-
actions in order to retrieve the query results.

The disclosed approach has several advantages. First, it can
accurately estimate relative distances and orientations
between people in 3D. Second, it encodes spatial arrange-
ments of people into a richer set of shape descriptors than
afforded in 2D. Our 3D shape descriptors are invariant to
camera pose variations often seen in web images and videos.
The proposed approach also estimates camera pose and uses
it to capture the intern of the photo. To achieve an accurate 3D
people layout estimation, we develop an algorithm that
robustly fuses semantic constraints about human interposi-
tions into a linear camera model. This enables our model to
handle large variations in people size, heights (e.g. age) and
poses. An accurate 3D layout also allows us to construct
features informed by Proxemics that improves our semantic
classification. To characterize the human interaction space,
we introduce visual proxemes; a set of prototypical patterns
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that represent commonly occurring social interactions in
events. We train a discriminative classifier that classifies 3D
arrangements of people into visual proxemes and quantita-
tively evaluate the performance on a large, challenging
dataset.

This disclosure is to be considered as exemplary and not
restrictive in character, and all changes and modifications that
come within the spirit of the disclosure are desired to be
protected.

The invention claimed is:

1. A method for recognizing a human interaction depicted
in a two-dimensional image, the method comprising, algo-
rithmically:

detecting a plurality of human face locations of people

depicted in the image;

determining a three-dimensional spatial arrangement of

the people depicted in the image based on the detected
human face locations;

performing a proxemics-based analysis of the three-di-

mensional spatial arrangement of the people depicted in
the image, wherein the proxemics-based analysis iden-
tifies cues in the three-dimensional spatial arrangement
that are relevant to human interactions; and

classifying the image as depicting a type of human inter-

action using visual proxemes, wherein the visual prox-
emes comprise a set of prototypical patterns that repre-
sent commonly occurring people interactions;

wherein the image is created by a camera positioned at a

camera viewpoint relative to a reference plane, and the
method comprises estimating the camera viewpoint and
using the estimated camera viewpoint to classify the
image.

2. The method of claim 1, comprising detecting, in the
image, a person standing in front of another person by apply-
ing a proxemics-based visibility constraint.

3. The method of claim 1, comprising detecting, in the
image, a child and an adult by applying a proxemics-based
localized pose constraint.

4. The method of claim 1, comprising classifying the image
as depicting a group interaction, a family photo, a group
photo, a couple with an audience, a crowd scene, or a speaker
and an audience.

5. The method of claim 1, comprising detecting a plurality
of feature cues in the image, wherein each of the feature cues
relates to a proxemics-based attribute.

6. The method of claim 5, wherein the plurality of feature
cues comprises a shape cue that indicates a shape of the
spatial arrangement of the detected face locations, a shot
composition cue that indicates a visual distribution of the
people depicted in the image, a distance cue that measures
distances between the detected face locations in the image, a
camera pose cue that estimates the height of the camera used
to capture the image in relation to the people depicted in the
image relative to a ground plane, and a shape layer cue that
indicates whether the people depicted in the image are
arranged in a single group or in separate subgroups.

7. The method of claim 1, comprising creating a collection
of classified images by repeating the detecting, determining,
performing, and classifying for a plurality of two-dimen-
sional images and arranging the classified images in a collec-
tion according to human interaction type.

8. The method of claim 7, comprising searching the col-
lection using search criteria including a human interaction
type.

9. The method of claim 7, comprising retrieving an image
from the collection based on a human interaction type.
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10. A method for recognizing a human interaction depicted
in a two-dimensional image, the method comprising, algo-
rithmically:

detecting a plurality of human face locations of people

depicted in the image;

determining a three-dimensional spatial arrangement of

the people depicted in the image based on the detected
human face locations;
performing a proxemics-based analysis of the three-di-
mensional spatial arrangement of the people depicted in
the image, wherein the proxemics-based analysis iden-
tifies cues in the three-dimensional spatial arrangement
that are relevant to human interactions;
classifying the image as depicting a type of human inter-
action using visual proxemes, wherein the visual prox-
emes comprise a set of prototypical patterns that repre-
sent commonly occurring people interactions; and

classifying a camera viewpoint as a high-angle viewpoint,
an eye-level viewpoint, or a low-angle viewpoint.

11. A method for recognizing a human interaction depicted
in a two-dimensional image, the method comprising, algo-
rithmically:

detecting a plurality of human face locations of people

depicted in the image;

determining a three-dimensional spatial arrangement of

the people depicted in the image based on the detected
human face locations;
performing a proxemics-based analysis of the three-di-
mensional spatial arrangement of the people depicted in
the image, wherein the proxemics-based analysis iden-
tifies cues in the three-dimensional spatial arrangement
that are relevant to human interactions;
classifying the image as depicting a type of human inter-
action using visual proxemes, wherein the visual prox-
emes comprise a set of prototypical patterns that repre-
sent commonly occurring people interactions; and

analyzing the plurality of detected human face locations
using a linear camera model, identifying a face location
that does not fit the linear camera model as an outlier,
identifying a face location that fits the linear camera
model as an inlier, determining the position of the outlier
in relation to the inlier, and classifying the image as
depicting a type of human interaction based on the posi-
tion of the outlier in relation to the inlier.

12. The method of claim 11, comprising analyzing the
position of the outlier in relation to the inlier using one or
more visual proxemics-based constraints.

13. A method for recognizing a human interaction depicted
in a two-dimensional image, the method comprising, algo-
rithmically:

detecting a plurality of human face locations of people

depicted in the image;

determining a three-dimensional spatial arrangement of

the people depicted in the image based on the detected
human face locations;

performing a proxemics-based analysis of the three-di-

mensional spatial arrangement of the people depicted in
the image, wherein the proxemics-based analysis iden-
tifies cues in the three-dimensional spatial arrangement
that are relevant to human interactions;

classifying the image as depicting a type of human inter-

action using visual proxemes, wherein the visual prox-
emes comprise a set of prototypical patterns that repre-
sent commonly occurring people interactions; and
alternating between estimating a camera parameter of the
camera used to create the image and applying prox-
emics-based constraints to the three-dimensional spatial
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arrangement of the human face locations detected in the
image to identify the type of human interaction depicted
by the image.
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